skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chipman, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial–interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations to assess the timing of low-latitude temperature changes relative to global climate forcings. We report 10 Be ages of moraines in tropical East Africa and South America and show that glaciers reached their maxima at ~29 to 20 ka, during the global Last Glacial Maximum. Tropical glacial recession was underway by 20 ka, before the rapid CO 2 rise at ~18.2 ka. This “early” tropical warming was influenced by rising high-latitude insolation and coincident ice-sheet recession in both polar regions, which lowered the meridional thermal gradient and reduced tropical heat export to the high latitudes. 
    more » « less
  2. Abstract The magnitude of tropical cooling during the Last Glacial Maximum (LGM; ∼19–26.5 ka) remains controversial, with sea‐surface temperatures cooling by several degrees less than most temperatures reconstructed at high elevations. To explain this discrepancy, past studies proposed a steeper (increased) lapse rate—the temperature decrease with elevation—during the LGM relative to today. For instance, LGM temperatures in East Africa reconstructed from branched GDGTs from multiple elevations support an ∼0.9°C/km increase in the lapse rate during the LGM relative to present day. Lapse rates are a critical part of the Earth's climate sensitivity and atmospheric energy transfer, and it is vital to know whether and by how much the tropical lapse rate steepened during the LGM. Here, we simulate LGM glacier extents in the Rwenzori Mountains of Uganda with and without a change in lapse rate using a range of temperature and precipitation estimates. We find that the lapse rate must have been steeper than present for glaciers to reach their LGM positions using available sea‐level temperature and precipitation estimates for East Africa. 
    more » « less